Sequential second derivative general linear methods for stiff systems

نویسندگان

چکیده مقاله:

‎Second derivative general linear methods (SGLMs) as an extension‎ ‎of general linear methods (GLMs) have been introduced to improve‎ ‎the stability and accuracy properties of GLMs‎. ‎The coefficients of‎ ‎SGLMs are given by six matrices‎, ‎instead of four matrices for‎ ‎GLMs‎, ‎which are obtained by solving nonlinear systems of order and‎ ‎usually Runge--Kutta stability conditions‎. ‎In this paper‎, ‎we‎ ‎introduce a technique for construction of an special case of SGLMs‎ ‎which decreases the complexity of finding coefficients matrices‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

sequential second derivative general linear methods for stiff systems

‎second derivative general linear methods (sglms) as an extension‎ ‎of general linear methods (glms) have been introduced to improve‎ ‎the stability and accuracy properties of glms‎. ‎the coefficients of‎ ‎sglms are given by six matrices‎, ‎instead of four matrices for‎ ‎glms‎, ‎which are obtained by solving nonlinear systems of order and‎ ‎usually runge--kutta stability conditions‎. ‎in this p...

متن کامل

Sequential Second Derivative General Linear Methods for Stiff Systems

Second derivative general linear methods (SGLMs) as an extension of general linear methods (GLMs) have been introduced to improve the stability and accuracy properties of GLMs. The coefficients of SGLMs are given by six matrices, instead of four matrices for GLMs, which are obtained by solving nonlinear systems of order and usually Runge–Kutta stability conditions. In this paper, we introduce a...

متن کامل

Third Derivative Multistep Methods for Stiff Systems

Abstract: In this paper, we present a class of multistep methods for the numerical solution of stiff ordinary differential equations. In these methods the first, second and third derivatives of the solution are used to improve the accuracy and absolute stability regions of the methods. The constructed methods are A-stable up to order 6 and A(α)-stable up to order 8 so that, as it is shown in th...

متن کامل

high order second derivative methods with runge--kutta stability for the numerical solution of stiff odes

‎we describe the construction of second derivative general linear methods (sglms) of orders five and six‎. ‎we will aim for methods which are a--stable and have runge--kutta stability property‎. ‎some numerical results are given to show the efficiency of the constructed methods in solving stiff initial value problems‎.

متن کامل

A Family of Trigonometrically Fitted Enright Second Derivative Methods for Stiff and Oscillatory Initial Value Problems

A family of Enright’s second derivative formulas with trigonometric basis functions is derived using multistep collocation method. The continuous schemes obtained are used to generate complementary methods. The stability properties of the methods are discussed.Themethodswhich can be applied in predictor-corrector formare implemented in block formas simultaneous numerical integrators over nonove...

متن کامل

On second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize

Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 40  شماره 1

صفحات  83- 100

تاریخ انتشار 2014-02-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023